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Abstract

House flies are a ubiquitous insect that have the potential to spread many diseases to humans and livestock. Managing house fly populations
is accomplished by having desirable baits, traps, and killing agents. Most house fly baits are designed for outdoor use or limited indoor use, and
have a foul odor that is not conducive to food preparatory and dining areas. Blackstrap molasses has long been used as a house fly bait, but it is
sticky and viscous, making it difficult to handle. This study sought to identify compounds present in blackstrap molasses that might be attractive to
house flies, and therefore, provide the public with an indoor bait that does not have an offensive smell and is easy to handle. Indoor bioassays with
house flies using 50% blackstrap molasses diluted in deionized water, a hexane extract of blackstrap molasses, and deionized water, elicited 86.2%,
70.6%, and 13.8% responses, respectively. Hexane and diethyl ether extracts of blackstrap molasses produced a large number of compounds with
widely differing organic structures including substituted phenols, nitrogen and oxygen heterocycles, carboxylic acids, and many other organic

compounds.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

House flies are pestiferous insects that benefit from human
colonization, and are readily found on all continents, except
Antarctica. These insects are vectors for many diseases including
shigellosis [1], enterohemorrhagic Escherichia coli O157:H7
[2-5], salmanellosis [6,7], and cholera [8,9]. Many commer-
cial types of bait are available to attract house flies, but most are
designed for outdoor or limited indoor use, due to their malodor-
ous components. There is a great deal of literature on attractants
of house flies, perhaps originating with the description of a trap
baited with fish heads, watermelon rinds, corncobs and ice cream
[10]. Much of this work has focused on identifying components
of food odors that can be incorporated into lures [11-14]. Early
efforts with baits relied on natural products such as fermented
egg slurries [15] or combinations of such items as molasses,
milk, yeast, grain, blood, and banana extract [16,17]. Brown et

* Corresponding author. Tel.: +1 352 374 5723; fax: +1 352 374 5922.
E-mail address: bquinn@gainesville.usda.ufl.edu (B.P. Quinn).

0021-9673/$ — see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.chroma.2006.11.039

al. [18] tested a range of defined chemical attractant candidates
and found that combinations were superior to any individual
component tested alone. Mulla et al. [19] reported that blends
of trimethylamine, ammonia, indole and linoleic acid were as
attractive to house flies as natural food baits. The most common
commercial feeding-attractant in use today, Farnam Fly Attrac-
tant, was derived by modifying ratios of trimethylamine-HCI
with indole and adding the pheromone muscalure, described
below. This attractant is used in granular sugar baits with a tox-
icant and in toxicant-free liquid jug traps. Geden [20] reported
that a 25% dilution of farm-grade blackstrap molasses was as
effective as the Farnam attractant at a fraction of the cost of
the commercial lure. In addition to feeding attractants, flies are
attracted to the pheromone (Z)-9-tricosene (muscalure) [21,22],
and this material is used in most of the commercial scatter baits
that are currently on the market.

Molasses has long been recognized as a potent house fly
attractant. Nearly 100 years ago, Howard [10] stated that “old”
pharmacy treatises included recipes for toxic fly bait that used
molasses as the attracting agent. Processing sugar yields a num-
ber of different products that are useful for human or livestock



Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
03 NOV 2006 2. REPORT TYPE 00-00-2006 to 00-00-2006
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Analysis of extracted and volatile componentsin blackstrap molasses feed
as candidate house fly attractants

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Center for Medical, Agricultural and Veterinary REPORT NUMBER
Entomology,USDA-ARS,1600 SW 23rd Drive,Gainesville FL ,32608

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 6
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18



280 B.P. Quinn et al. / J. Chromatogr. A 1139 (2007) 279-284

consumption. The first product made from pressing sugar cane
(Saccharum sp.) is called cane juice, and it is clarified with lime
and dried to make table sugar, since it contains the highest con-
centration of sucrose. The second product made from sugar cane
is called cane molasses, which is the most common molasses
used in cooking and the food industry. Blackstrap molasses, a
tertiary commaodity of sugar production, is made by thermally
concentrating the juice of shredded sugar cane that has been pre-
viously expressed to make the other two products, and decanting
it into a thick syrup usually containing less than 20% water [23].
This low water content discourages bacterial growth, and thus,
acts as a preservative.

2. Materials and methods
2.1. Extract analysis

A 240-mL aliquot of a commercial blackstrap molasses feed
(Alachua Feed & Seed Co., Gainesville, FL, USA) was added to
a 2-L round-bottomed flask along with 260 mL of a 3.1 M solu-
tion of NaCl in deionized water and 400 mL of either hexane
or diethyl ether (Burdick & Jackson, Morristown, NJ, USA).
These mixtures were extracted overnight using a continuous
liquid-liquid extraction apparatus, and the extracts were con-
centrated to approximately 150 mL using a rotary evaporator.
All extracts were held at 4 °C until analysis.

A1-pL aliguot from each extract was analyzed along with the
appropriate solvent blanks using a Trace GC/MS (Thermo Elec-
tron, San Jose, CA, USA) equipped with a DB-Waxetr (Agilent,
Wilmington, DE, USA) column (30 m x 0.25mm inner diam-
eter, film thickness was 0.25 um). The GC oven temperature
program consisted of an initial hold at 35°C for 6 min, then a
ramp at 10 °C/minto 260 °C, followed by a final hold for 5 min at
260 °C. The injection port was held at 260 °C in splitless mode,
the transfer line was set to 260 °C, and the carrier gas was set to
a constant flow of 1.2 mL/min.

Compounds were identified by analytical standards
(Sigma-Aldrich, St. Louis, MO, USA) when standards were
available. Otherwise, very good library matches with a reverse
fit of greater than 870 were required along with a retention
time that logically fit into the chromatogram. The US National
Institute of Standards and Technology (NIST) mass spectral
database library (Gaithersburg, MD, USA) was used for
tentative compound identifications.

2.2. Volatile analysis

A container of mill run blackstrap molasses was received
directly from the production line at the United States Sugar
Corporation (Clewiston, FL, USA) for analysis of volatile com-
pounds. A 25-g sample was removed from the container and
transferred to an opened 1-L Tedlar gas sampling bag (SKC,
Eighty Four, PA, USA) and subsequently sealed. The bag with
the sample was flushed with humidified ultra-high purity nitro-
gen and followed by two additional stages of being flushed and
evacuated. The sample was then placed into a 45°C oven for
30 min before transferring 600 mL of the headspace contents of

the bag to a 600-mL canister (Entech Instruments, Simi Valley,
CA, USA). A 250-mL aliquot of the sample from the canister
was analyzed for volatile organic components.

The 250-mL sample was directed at 100 mL/min into an
Entech 7100A Preconcentrator (Entech Instruments). This
instrument uses a 3-trap system to manage both water and carbon
dioxide in air samples. The first trap was a glass bead trap that
was cooled to —160°C. The glass bead trap was then warmed
to 10°C, and the sample was transferred to a Tenax trap that
was cooled to —30 °C. The Tenax trap was heated to 180 °C and
the sample was transferred over three minutes to a fused silica
trap that was cooled to —160 °C. The fused silica trap was then
heated rapidly to 100 °C and the sample was introduced to a GC
system. The GC/MS system used for this analysis was a DSQ
(Thermo Electron) fitted with a 60 m DB1-MS (Agilent) column
(0.32 mm inner diameter and 1 wm film thickness). The GC oven
temperature was held at 35°C for 4 min before it was ramped
to 290 °C at 10 °C/min and held at 290 °C for 5 additional min-
utes. The transfer line was held at 280 °C for the duration of
the analysis and the MS was set to scan from m/z 34 to 280 at
0.1 scans/s.

2.3. Biological assays

Fly pupae were placed in 0.5-m-square cages (5 cages of
400 pupae per treatment) and held for emergence at 25 °C, 60%
RH and constant light with water and food (a mixture of pow-
dered milk, sugar, and powdered egg ataratio of 6:6:1, v/v/v); an
average of 362 flies/cage emerged from the pupae. After approx-
imately 24 h of feeding ad libitim, the food was removed from
the cages for 24 h. Two candidate attractants, 50% blackstrap
molasses diluted in deionized water, a hexane extract of black-
strap molasses, and a deionized water control, were pipetted
onto 5-cm filter paper disks. After letting the solvent completely
evaporate, a disk was then placed into a 60-ml plastic cup with
a screened lid to prevent flies from contacting the test material,
and the cup was placed inside a 500-ml plastic container with
a lid. A 1-cm diameter hole was cut in the lid and the samples
were placed in the fly cages, with each cage receiving the test
material and either a water or hexane control for molasses and
hexane extract tests, respectively, in paired tests. After 5 min, the
hole in the outer container was sealed and the flies were knocked
down with CO» and counted.

3. Results and discussion

The results from the analysis of extracted blackstrap molasses
(Table 1, Fig. 1) show many different organic components with
varying functional groups. A large series of substituted phenols
was present in the extracts, and many of them were not satisfacto-
rily identifiable using the MS library. These phenolic compounds
are likely breakdown products of naturally-occurring polyphe-
nols, and are created during the process of molasses production
[24]. Many heterocycles were present in the extracts including
pyrazines, pyrrolidines, furans, and pyranones, along with sev-
eral different furanones which are known degradation products
of simple sugars. At least one furanone in this sample, 2,5-
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Table 1
Organic components extracted from blackstrap molasses

Compound name

Retention time (min)

Found in extract Confirmed by standard

Dihydro-2-methylhydroxy-2(3H) furanone 11.59
3-Hydroxy-2-butanone 11.96
2,5-Dimethylpyrazine 12.69
Trimethylpyrazine 13.82
Acetic acid 14.41
Propionic acid 15.45
Butanoic acid 16.86
Furfuryl alcohol 17.16
Pentanoic acid 18.14
Propanamide 18.84
2-Hydroxy-3-methyl-2-cyclopenten-1-one 19.08
Hexanoic acid 19.34
2,5-Dimethyl-4-hydroxy-3(2H) furanone 19.44
Butylated hydroxytoluene 19.92
Acrylamide 20.22
1-(1H-Pyrrol-2-yl) ethanone 20.63
Furan carboxylic acid methylethyl ester 21.04
2(3H)-Dihydro-3-hydroxy-4,4-dimethylfuranone 21.26
5-Acetyldihydro-2(3H) furanone 21.59
2-Methoxy-4-vinylphenol 22.79
5,6-Dihydro-6-pentyl-2H-pyran-4-one 23.17
2,6-Dimethoxyphenol 2341
1-Acetylpyrrolidine 24.43
2,3-Dihydrobenzofuran 24.55
1,4:3,6-Dianhydro-a-d-glucopyranose 24.63
Benzoic acid 25.20
6-Ethoxy-1,2-dihydro-2,2,4-trimethylquinoline 25.37
Benzeneacetic acid 26.14
Dihydro-4-hydroxy-2(3H) furanone 26.32
1-(4-Hydroxy-3-methoxyphenyl) ethanone 26.62
1-(4-Hydroxy-3-methoxyphenyl)-2-propanone 26.74
2,6-Dimethoxy-4-(2-propenyl)-phenol 27.27
3,4-Dimethoxyphenol 27.54
4-(4-Hydroxy-3-methoxyphenyl)-2-butanone 27.81
Hexadecanoic acid 28.52
3-(2-Hydroxyphenyl)-2-propenoic acid 28.62
4-Methoxybenzoic acid 28.68
4-Hydroxy-9-fluorenone 28.89
4-Hydroxybenzaldehyde 29.07
4-Pyridinecarboxamide 29.18
4-Hydroxy-3-methoxybenzeneacetic acid 29.22
1-(4-Hydroxy-3,5-dimethoxyphenyl) ethanone 29.35
4-Hydroxybenzene ethanol 29.44
4-Hydroxybenzene acetonitrile 31.10
1-Acetyl-9H-pyrido[3,4B]indole 31.77

Hexane X
Ether

Ether X
Ether X
Both

Both X
Both X
Both X
Hexane

Ether X
Both X
Ether

Both

Ether

Ether X
Both X
Hexane

Ether X
Ether

Both

Hexane

Both X
Ether

Ether

Ether

Both X
Both

Both X
Ether

Both X
Both X
Both

Both

Hexane

Hexane

Hexane

Hexane X
Hexane

Ether X
Ether X
Ether

Hexane

Ether X
Ether X
Ether

dimethyl-4-hydroxy-3(2H)-furanone, was found to be a direct
conversion product of p-fructose, thereby bypassing cleavage of
the carbohydrate [25,26]. The compounds 2,5-dimethylpyrazine
and trimethylpyrazine are commonly found in the thermal
processing of natural products. Both are present during the
processing of maple syrup [27] and processed cocoa beans
[28,29], while trimethylpyrazine and not 2,5-dimethylpyrazine
was found in dark chocolate [30], and roasted peanuts [31]. Both
pyrazines compounds were found to be attractive to the Mexican
fruit fly [32].

Some compounds found in Table 1 have been tested
for a response from house flies using gas chromatogra-
phy/electroantennogram detection (GC/EAD). This technique
provides a means of screening compounds for biological activ-

ity based upon electrical impulses from antennae when odorants
bind to a receptor site. A positive GC/EAD response indi-
cates likelihood that the odorant is detected by at least one
antennal receptor; however, it does not provide the behavioral
significance of the odorant response, i.e. whether the compound
functions as a kairomone, pheromone, or allomone. From a study
of pig manure volatiles, it was determined that butanoic acid
elicited a positive response from house fly antennae, whereas
acetic acid, pentanoic acid, hexanoic acid, and hexadecanoic
acid did not produce a significant electrophysiological response
[33].

A previous experiment involving the fermentation of black-
strap molasses followed by headspace analysis identified
2,3-dibenzofuran as one of the constituents [34], a compound
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Fig. 1. Chromatograms of hexane (top) and ether extractions of blackstrap molasses feed.

which was also detected in this study (Table 1). Another
study conducted on volatiles from cane molasses identified
furfuryl alcohol, which was found in both hexane and ether
extracts in this study [35]. This same study on cane molasses
volatiles [35] yielded a large number of esters including ethyl
formate, anisole, methyl benzoate, ethyl benzoate, and oth-
ers that are indicative of microbial conversion products. Their
formation is usually attributed to the presence of anaerobic bac-
teria that convert hydroxyl-groups to methyl and ethyl esters.
Some examples of possible compounds of esterification found
in this study include 2,6-dimethoxyphenol, 1-(4-hydroxy-3,5-
dimethoxyphenyl) ethanone, and 2-methoxy-4-vinylphenol. A
counterargument to microbial activity in molasses was presented
in a study that showed that acetic, butyric, propionic, and pen-
tanoic acids, which were all found in this extract, were inhibitors
of fermentation [36]. While those compounds might inhibit fer-
mentation, there could be other microbial action taking place as
shown by the presence of so many esters in these experimental
extracts or concentrations of these carboxylic acids were too low
to inhibit microbial degradation.

A study conducted on cane juice, the raw expressed liquid
from sugar cane, yielded a list of 15 identified compounds,
none of which were found in extracted or volatile samples from
this study [37]. This suggests that many compounds present
in blackstrap molasses are thermal degradation products of
the abundant sugars found in this commodity. This conclusion
is further supported by a study of sucrose pyrolysis products

that listed furfural and 2-hydroxy-3-methyl-2-cyclopenten-1-
one, which were both major components found in extracted
blackstrap molasses feed [38]. This same study suggested that
one of the first intermediate compounds of sugar pyrolysis was
1,4:3,6-dianhydro-a-d-glucopyranose, which was found in the
ether extract of blackstrap molasses. An earlier study attempt-
ing to identify phenolic compounds in cane molasses found only
one compound that matched the findings of this study, benzoic
acid [39]. Since blackstrap molasses is heated longer than cane
molasses, further conversion of intrinsic sugars and polyphe-
nolic compounds must be occurring to produce some of the
compounds found in Table 1. In comparison, the results of the
extracted samples from this experiment were matched with a
study that investigated the aroma compounds from citrus honey;,
and only furfural was found to be a major component in both
sample matrices [40].

Analysis of volatile samples of blackstrap molasses yielded
a number of organic compounds (Table 2, Fig. 2). Many of the
compounds including acetaldehyde, ethanol, acetone, dimethyl
sulfide, 2-methylfuran, 2-methylbutanal, and 2,3-pentanedione
were also found in a study that analyzed volatiles of a sample
of blackstrap molasses from South America [41]. Acetalde-
hyde and ethanol have also been identified in cane molasses
[35] and both compounds have been identified as mild attrac-
tants to houseflies [12]. Analysis of extracted honey produced
2-methylfuran and 2,3-pentanedione [40], and both were found
in the volatile analysis of blackstrap molasses.



Table 2

\olatile organic components from blackstrap molasses

Compound name

Retention time (min)

Acetaldehyde 4.85
Ethanol 5.74
Acetone 6.07
Dimethyl sulfide 6.71
2-Methylpropanal 7.37
2,3-Butanedione 7.94
2-Butanone 8.16
2-Methylfuran 8.60
2-Methyl-2-buten-2-ol 8.80
3-Methylbutanal 9.62
2-Methylbutanal 9.88
2,3-Pentanedione 10.50
Pentanal 10.61
Toluene 12.64
Dihydro-2-methyl-3(2H)furanone 13.07

In bioassays, an average of 25.0 4- 2.6 [mean (SE)] flies were
captured in molasses-baited containers after five minutes, com-
pared with 4.040.8 in the water controls (86.2% response).
Containers baited with hexane extract captured 14.4 4 3.0 com-
pared with 6.0+1.0 (70.6% response), indicating that the
hexane extract retains most of the behaviorally-active olfactory
cues found in the raw product. In tests with paired blanks, fly
response was weak and indicated no preference for either side of
the arena (3.4 + 0.8 versus 3.8 +1.0). This reduction in house
fly attractiveness to the hexane extract is likely due to the loss
of some important volatile compounds from the rotoevapora-
tion required to concentrate the sample. Because the hexane
extract was so attractive to house flies, the ether extract was not
bioassayed; however, both the hexane and ether extracts were
analyzed by GC/MS.

The concentration of blackstrap molasses affects the biolog-
ical attractiveness observed in house flies. A 50% dilution of
molasses in deionized water was used and elicited an aver-
age 86.2% attraction response from house flies. A previous
field study showed that a 25% dilution of blackstrap molasses
showed no statistical difference in the attraction compared to
that of the commercially available Farnam bait [20]. However,
laboratory olfactometer studies of the 10% and 1% dilutions
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Fig. 2. Chromatogram of volatile components in blackstrap molasses.
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showed no significant difference from the deionized water
control [12].

Further studies will be aimed at identifying the components
responsible for attraction of house flies to fresh molasses and
comparing the concentrations of these compounds to levels in
fermented or microbially oxidized molasses. Fresh molasses has
been successfully used as an attractant either by itself [10,20]
or in a mixture with other ingredients such as the Beltsville Bait
[16]. Historically, fermented molasses has been used by poultry
farmers in California to bait and kill house flies [14]. Since sug-
ars are not very volatile, either volatile intrinsic components or
degradation products of blackstrap molasses are expected to be
the odor cues used by house flies to locate this food source.
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